
Draft

1

DESIGNING A ROBUST USB SERIAL INTERFACE ENGINE(SIE)

What is the SIE?

A typical function USB hardware interface is shown in Fig. 1.

USB
Transceiver

USB
Serial

Interface
Engine

Buffers/
Interface
Logic

Function
Controller

Status

Control

Data

Fig. 1: USB Function hardware interface

The SIE is the frontend of this hardware and handles most of the protocol described in
chapter 8 of the USB specification. The SIE typically comprehends signaling upto the
transaction level. The functions that it handles could include:

• Packet recognition, transaction sequencing
• SOP, EOP, RESET, RESUME signal detection/generation
• Clock/Data separation
• NRZI Data encoding/decoding and bit-stuffing
• CRC generation and checking (Token and Data)
• Packet ID (PID) generation and checking/decoding
• Serial-Parallel/ Parallel-Serial Conversion

A typical implementation of an SIE with these functions takes about 2500 gates. So the
module itself is fairly small; and the functionality is straightforward. In spite of this
apparent simplicity, it is possible to end up with a design that doesn’t work reliably i.e. a
design which is not robust. This paper will point out the reasons for this and describe
techniques that will eliminate these problems from a design.

Sources of robustness problems

The primary source of robustness problems is the existence of multiple clock domains in
the SIE, some of which are asynchronous to each other. If signaling between these
domains doesn’t adhere to synchronization rules, intermittent problems can result. These
problems are invariably difficult to track down and fix.

Other areas which have the potential for robustness problems include:

Draft

2

• out-of-band signal handling on per-packet basis
• bit stuffing/unstuffing
• special casing for setup, iso etc
• special casing for low speed
• suspend /resume support

The following sections will review each of these areas in turn and discuss techniques to
address the problems.

Multiple clock domains

The typical SIE has to deal with four clock zones in three domains:
• USB host 12Mhz clock or receive clock
• internal 4x clock (48Mhz) and transmit clock (divided by 4 version)
• SIE backside clock or interface clock

Each of these domains is discussed in turn in the following sections.

DPLL and receive clock
The 12Mhz clocks in the host/hub and the function are aysnchronous since they are
derived from different crystals which can have a tolerance of +/-0.25%. So bitwise
synchronization is needed and achieved with the help of a PLL. A typical implementation
would use a digital PLL with 4x oversampling to derive the received clock.. At any bit,
the derived clock period can be +/-25% of the nominal period as explained below.

A typical DPLL state machine is shown in Fig. 2 and runs on the 48Mhz clock.

Draft

3

1 5

3 7

2 B F 6

0 4

C
D

b=1

a=1

b=1

(b=1)(b=0)

b=0

a=0

(b=0)

(b!=0)

(b!=1)

!rcv or reset

(b!=0)

Fig. 2: Example DPLL implementation

‘a’ and ‘b’ are the differential receiver output synchronized by a stage of the 48Mhz (also
a’ is synchronized on the rising edge and ‘b’ is synchronized on the

falling edge.

In this state machine, states C and D are used to lock to the incoming bitstream using
the initial transitions (edges); after lock is achieved the DPLL circulates in either the right
half (when bit stream is a ‘1’) or in the left half (when bitstream is a ‘0’). The nominal loop
is through the 4 states in a vertical line (5 7 6 4 or 1 3 2 0). In this nominal loop, the
inner two states generate the clock high period and the outer states generate the clock
low period for the receive 12Mhz clock. These states are chosen to ensure adequate
setup and hold time for clocking the extracted data. Transitions in the bit stream result in
switching between the loops; if there is no change in bit width (perfectly synchronous
clocks), the transitions will be from states 0 and 4. If the bit width is shorter (host is

Draft

4

running at a higher frequency), the transition will be from states 2 and 6. So the low
period of the derived clock is shortened by one 4x period for the short bit. A long bit
width will cause detours from states 3 and 7 through states F and B before going to
states 6 and 2 respectively; this will add an extra 4x high period to the derived clock.

With the state encoding shown, bit 2 of the state (encoded as bits 3..0) represents the
data; a glitch-free receive clock can be obtained by running the derived clock through a
flip-flop clocked by the 4x clock. Further qualification and use of the received bitstream
(e.g. sync detect) should be based on this extracted clock on the extracted data.

A corollary of the way this DPLL works is that if there are not enough edges (at least 2)
received, lock cannot be achieved (i.e. DPLL will not progress past the D state) and no
clock can be derived. This can happen for example when resume signaling is received by
the awake function. It could also arise if the differential receiver generates an edge when
it sees the transition from idle to single-ended 0 signaling during reset.

Race Conditions in the transmit domain
The clock zones in the second domain are synchronous; however race conditions could
occur in signaling between the 1x and 4x sub domains because the 1x clock is derived
from the 4x clock. This may be a bigger problem in some target technologies than in
others. The problem is exacerbated by the need to switch the hardware between
transmitter and receiver clocks.

Since the USB is half duplex several of the modules in the SIE can be shared between
transmit and receive e.g. the crc logic . Since every USB transaction includes receive and
transmit phases, the state machines carry state between the phases. So there is a need
for a means to reliably multiplex between receive clock and transmit clock. A state
machine is shown in Figure 3. It switches btween the receive clock (dclk from the dpll)
in state 0 and the transmit clock (clk12s) in state 3. The output clock is ‘0’ in the other
states. This mechanism provides a glitch free clock which has the low period extended
during the transaction phase transitions. The rcv signal indicates that the SIE is in receive
mode. When generating this signal it is important to ensure that the reflection of a
transmitted EOP does not get seen as the start of a new packet and cause the mux to
switch over to receive (i.e. to the dpll clock which won’t be generated because there are
not enough edges for the dpll to lock on).

Draft

5

1

3

2

clk12s=0

rcv=0 &dclk=0
dclk=0

rcv=1&clk12s=1

0

3

reset

Fig 3: Switching between transmit and receive clocks

All synchronous designs will have some skew between the different branches of the clock
tree (shown as skew1 in Figure 4). The addition of logic to generate the clocks and
multiplex the clocks in the SIE creates additional skew between the nominally
synchronous clock domains. The timing paths of signals which go between these
domains should be analyzed closely to avoid race conditions and consequent anomalous
behavior. The End Of Packet (EOP) is one such signal which is derived in the 4x domain
(as described later) and used by the state machines in the 1x domain.

D Q

Q

D Q

Q

D Q

Q

comb
delay

4x domain 1x domain

skew1 skew2

Draft

6

Fig. 4: Inter-domain signaling between nominally synchronous domains

The backside clock
The SIE backside could be running on a different clock than the SIE; since the data
transfer interface is byte wide, standard four phase closed loop signaling with
handshake signal synchronization can be used for the data transfers. Fig. 5 shows the
transfer of received data bytes from the SIE to the backside using READY signal from the
SIE and the RD signal handshake from the backside.

RX_DATA

READY

RD

Fig 5: Rx_Data transfer

Fig. 6 below shows the transfer of transmit data from the backside to the SIE using
READY from the SIE and WR handshake from the backside.

TX_DATA

READY

WR

Fig 6: Tx_Data transfer

Other control signals from the backside to the SIE must be synchronized as well; this is
typically done with the fastest clock which is the 4x clock in the SIE. The resulting
signals will be in the 4x domain and since they are used in the 1x domain, they should be
analyzed for race conditions as described in the previous section.

Packet delimiters and out of band signaling

Draft

7

Precise detection of packet delimiters is crucial for robust SIE operation. Each packet has
a start delimiter (or sync) and end delimiter (or EOP). The nominal sync field consists of
an NRZI KJKJKJKK pattern. Even though this is an in band (made up of differential
signals) pattern, the initial bit may be distorted due to hub turn on behavior ; as noted
previously, the DPLL may need some edges to achieve lock as well. An easy way to
account for this is to use only the latter portion of the sync field to detect sync. This
works because only the end of sync is needed to delimit the start of information in a
packet.

The sync detection can be done prior to data extraction in the DPLL. The detected end of
sync will then need to be synchronized with the data stream extracted by the DPLL. It is
easier and recommended to look for the end of sync in the data stream extracted by the
DPLL. The pattern being searched for should comprehend that the data output from the
DPLL during interpacket gap and unlocked states are not to be used when detecting the
sync pattern.

The EOP detection is more difficult because an out of band (single-ended 0 or se0)
value needs to be detected and timed followed by an in band signal. The se0 should be
assumed to be asynchronous to the inband signaling. This asynchronism could be due to
a combination of hub behavior, single ended receiver behavior and differential
receiver/DPLL behavior . The signaling passes through several stages of receivers and
transmitters between the host and the function. This produces skew between the inband
signaling and the out of band signaling. The in band <-> out of band transitions could also
result in differential receiver output edges which can affect clock extracted by the DPLL.
The USB spec requires full speed USB agents to accept se0 widths greater than or equal
to 82 ns and to reject widths of less than 40 ns. There are similar requirements for low
speed devices. The se0 of the EOP also needs to be terminated with a J transition.

One way to meet all these requirements for EOP detection is to use a state machine
running in the 4x domain as shown in Fig. 7.

Draft

8

se0

se0

se0

j/eop

se0

j/eop

!(se0+j)

Fig. 7: eop detection state machine

This EOP is detected in the 4x domain; however it is used by the state machines in the 1x
domain. This interdomain signaling should be analyzed carefully for race conditions as
described in a previous section. Note that the EOP and the J detection are asynchronous;
this is accounted for in the dead state on the extreme left. There is a similar
asynchronous zone between the inband signaling at the end of the packet and the out of
band se0 of the EOP which follows it. This may manifest itself as an extra bit at the end
of the packet and so is termed dribble; this must be accounted for in the state machines
when delimiting the end of packet. These state machines should also take into account
the fact that the possible dribble may follow a bit stuff at the end of a packet.

Other design subtleties

Bit stuffing and unstuffing can be implemented by putting the state machines and datapath
on hold while stuffing or stripping the extra bit. Bit unstuffing near the EOP needs to
be handled carefully as explained above.

Although most transactions are three phase, ISO transactions are only two phase and the
state machines need to comprehend this. Similarly SETUP transactions are identical to
OUT transactions except that they cannot be NAKed or STALLed. The data buffering
and the state machines need to take this into account. Data toggle sequencing logic at a
bidirectional endpoint should take into account the specific requirements for the starting
toggle sequence of each stage of a control transfer.

Draft

9

Low speed signaling is identical to full speed signaling except for the inversion of polarity.
But low speed devices need to comprehend that while most data entities are defined in
terms of number of bits, the se0 width for reset is not. Low speed devices should also
be able to handle keep-alive signals (bare EOPs) correctly.

SIE designers should also recognize that the DPLL may not be able to generate a clock
during resume and reset signaling even though it is nominally in receive. This is because
the DPLL needs at least two good edges before it can lock and start generating the clock
as explained earlier.

 Devices which implement remote wakeup should also have a means to time the period of
driving resume in the absence of the regular device clock. They should comprehend that
host wakeup events can occur at any time relative to the remote wakeup event. The
device also needs to maintain state information like address, interface setting etc. when
suspended.

Detection of USB reset should reset the SIE as well as the rest of the device; this will
reset the counter in the SIE which is timing the se0. This could result in a train of reset
pulses output from the SIE in response to a single long USB reset pulse from the host.
The device should work correctly in this case.

Conclusions

Asynchronous clock domains inherent in any interconnect technology (including USB)
makes the SIE design more challenging than may appear from an initial reading of the
spec. The use of a DPLL and a proven clock switching mechanism with careful analysis
of timing paths can help achieve a robust design here. The need to switch between in
band and out of band signaling to delimit the end of packet requires the need for dead
states and dribble bits to be handled in the state machines. Other subtleties in the spec
should also be kept in mind when designing an SIE. The protocol compliance checklist
can be very helpful in identifying areas which lack robustness. SIE cores are available
from various vendors; these can be of help to device designers in obtaining a robust
design. Bus functional models and other tools should provide a means to stress the
robustness areas in the SIE design.

