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DESIGNING  A ROBUST  USB SERIAL  INTERFACE  ENGINE(SIE)

What is the SIE?

A typical  function USB hardware interface is shown in Fig. 1.
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Fig.  1:  USB Function hardware interface

The SIE is the frontend of  this hardware and  handles  most of the  protocol described in
chapter 8 of the USB specification.    The SIE  typically comprehends signaling upto the
transaction level. The functions that it  handles  could include:

• Packet recognition, transaction sequencing
• SOP, EOP, RESET, RESUME  signal detection/generation
• Clock/Data separation
• NRZI Data encoding/decoding and bit-stuffing
• CRC generation and checking (Token and Data)
• Packet ID (PID) generation and checking/decoding
• Serial-Parallel/ Parallel-Serial Conversion

A typical  implementation of  an  SIE with these functions takes about 2500 gates.   So the
module itself is fairly small;  and the functionality is straightforward.   In spite of this
apparent simplicity, it is possible to end up with a design that  doesn’t work reliably  i.e. a
design which is not robust.   This paper will point out the reasons for this  and describe
techniques  that will  eliminate these problems from a design.

Sources of robustness problems

The primary source of robustness problems is the existence of multiple clock domains  in
the SIE, some of which are asynchronous to each other.   If signaling between these
domains  doesn’t adhere to synchronization rules, intermittent problems  can result.  These
problems are invariably difficult to track down and fix.

Other areas which have the potential for robustness problems include:
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• out-of-band signal handling on per-packet basis
• bit stuffing/unstuffing
• special casing for setup, iso etc
• special casing for low speed
• suspend /resume support

The following sections will review each of these areas in turn and discuss techniques to
address the problems.

Multiple clock domains

The typical SIE   has to deal with  four  clock zones  in three  domains:
• USB host 12Mhz clock  or receive clock
• internal 4x clock (48Mhz)  and   transmit   clock  (divided by 4 version)
• SIE backside clock or interface clock

Each of these  domains is discussed  in turn in the following sections.

DPLL and receive clock
The  12Mhz  clocks in the host/hub and the function are aysnchronous since they are
derived from different crystals  which can have a tolerance of +/-0.25%.  So  bitwise
synchronization is needed and achieved with the help of a PLL.   A typical implementation
would use a digital PLL  with 4x oversampling to derive the  received clock..    At any bit,
the derived clock  period can be +/-25% of the nominal period  as explained below.

A typical DPLL state machine is shown in  Fig. 2  and runs on the 48Mhz clock.
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Fig. 2:  Example DPLL implementation

‘a’  and ‘b’ are the differential receiver output synchronized by a stage of the 48Mhz  (also
a’ is synchronized on the rising edge and ‘b’ is synchronized on the

falling edge.

In this state machine, states   C and D are used to lock  to the incoming bitstream using
the initial transitions (edges);  after lock is achieved  the DPLL circulates in either the right
half (when bit stream is a ‘1’ ) or in the left half (when bitstream is a ‘0’).   The nominal  loop
is through the 4 states in  a vertical line ( 5 7 6 4   or 1 3 2 0).    In this nominal loop, the
inner  two states generate the clock high period and the outer states generate the clock
low period for the receive 12Mhz clock.  These states are chosen to ensure  adequate
setup and hold time for clocking the extracted data. Transitions in the bit stream  result in
switching between the loops;    if there is no change in bit width (perfectly synchronous
clocks),  the transitions will be from states 0 and 4.   If the bit width is shorter (host is
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running at a higher frequency),  the transition will be from  states 2 and 6.    So the low
period of the derived clock is shortened by  one  4x period for the short bit.   A long bit
width will  cause detours  from states 3 and 7  through   states F and B   before going to
states 6 and 2  respectively; this will add an extra 4x  high  period to the derived clock.

With the state encoding shown, bit 2 of the state (encoded as bits 3..0)  represents the
data;  a glitch-free receive clock can be obtained by running the derived clock through a
flip-flop clocked by the 4x clock.  Further qualification  and use of  the received bitstream
(e.g. sync detect) should be based on this extracted clock on the extracted data.

A corollary of the way this DPLL works is that if there are not enough edges (at least 2)
received, lock cannot be achieved (i.e. DPLL will not progress past the D state) and no
clock can be  derived.  This can happen for example when  resume signaling is received by
the awake function.  It could also arise if the differential receiver generates an edge when
it sees the  transition from idle to single-ended 0 signaling during reset.

Race Conditions in the transmit domain
The clock zones in the  second  domain are synchronous;  however race conditions could
occur in signaling between the 1x and 4x sub domains   because the 1x clock is derived
from the 4x clock.  This may be a bigger problem in some target technologies than in
others.  The problem is  exacerbated by the need to switch the hardware between
transmitter and receiver clocks.

Since the USB  is half duplex  several of the modules  in the SIE can be shared between
transmit and receive e.g. the  crc logic . Since every USB transaction includes receive and
transmit phases,  the state machines carry state between  the phases.   So there is a need
for  a means to  reliably multiplex between  receive clock  and transmit clock.    A state
machine  is  shown in Figure 3. It switches btween the receive clock (dclk from the dpll)
in state 0 and the transmit clock (clk12s)  in state 3.    The  output clock is  ‘0’ in the other
states.    This  mechanism provides a glitch free clock which has the low period extended
during the  transaction phase  transitions. The rcv signal indicates that the SIE is in receive
mode. When generating this signal it is important to ensure that the reflection of a
transmitted  EOP does not get seen as  the start of a new packet  and cause the mux to
switch over  to receive (i.e. to the dpll clock which won’t be generated because there are
not enough edges for  the dpll  to lock on).
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Fig 3:   Switching between transmit and receive clocks

All  synchronous designs will have some skew between the different branches of the clock
tree (shown as skew1 in Figure 4). The addition of logic to generate the clocks and
multiplex the clocks  in the SIE creates  additional  skew   between the nominally
synchronous clock domains.  The timing paths of signals  which  go between these
domains should be  analyzed closely  to avoid race conditions  and consequent anomalous
behavior.   The  End Of Packet (EOP) is one such signal which is derived in the 4x domain
( as described later) and used  by the state machines in the 1x domain.
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Fig.  4:   Inter-domain signaling  between nominally synchronous domains

The backside clock
The SIE backside could be running on a  different clock than the SIE;  since the data
transfer  interface is byte wide,  standard four phase  closed loop signaling  with
handshake signal synchronization can be used  for  the data transfers.    Fig. 5 shows the
transfer of received data bytes from the SIE to the backside using READY signal from the
SIE  and the RD signal handshake from the backside.
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Fig 5:   Rx_Data  transfer

Fig. 6 below shows the transfer of transmit data from the backside to the SIE using
READY from the SIE and WR handshake from the backside.
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Fig 6:   Tx_Data  transfer

Other control signals from the backside to the SIE must be synchronized as well;   this is
typically done with the fastest clock which is the 4x clock in the SIE.   The resulting
signals will be in the 4x domain  and since they are used in the 1x domain, they should be
analyzed for race conditions as described in the previous section.

Packet delimiters and out of band signaling
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Precise detection of packet delimiters is crucial for robust SIE operation.  Each packet has
a start delimiter (or sync) and end delimiter (or EOP).  The nominal sync field  consists of
an NRZI KJKJKJKK pattern.   Even though this is an in band (made up of differential
signals) pattern, the initial bit may be distorted due to hub turn on behavior ;  as noted
previously, the DPLL may need some edges to achieve lock as well.  An easy way to
account for this is to use only the latter portion of the sync field to detect sync.  This
works because only the end of sync is needed to delimit the start of information in a
packet.

The sync detection can be done prior to data extraction in the DPLL.  The detected end of
sync will then need to be synchronized with the data stream extracted by the DPLL.  It is
easier and recommended to look for the end of sync in the data  stream extracted by the
DPLL.  The pattern being searched for should comprehend that the data output from the
DPLL during interpacket gap and unlocked states  are not to be used  when detecting the
sync pattern.

The EOP detection is more difficult  because an out of band  (single-ended 0  or se0)
value needs to be detected and timed followed by an in band signal.  The   se0 should be
assumed to be asynchronous to the inband signaling.   This asynchronism could be  due to
a combination of  hub behavior,  single ended  receiver behavior and  differential
receiver/DPLL behavior .  The signaling passes through several stages of receivers and
transmitters  between the host and the function.   This produces  skew between the inband
signaling and the out of band signaling. The in band <-> out of band transitions could  also
result in differential receiver output edges which can affect clock extracted by the DPLL.
The USB spec requires full speed USB agents  to accept se0 widths greater than or equal
to 82 ns  and to reject widths of less than 40  ns.   There are similar requirements for low
speed devices.   The se0 of the EOP also needs to be terminated with a J transition.

One way to meet all these requirements for EOP detection is to use  a state machine
running in the 4x domain as shown in Fig. 7.
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Fig. 7:   eop detection state machine

This EOP is detected in the 4x domain; however it is used by the state machines in the 1x
domain.  This interdomain signaling should be analyzed carefully for race conditions as
described in a previous section.   Note that the EOP and the J detection are asynchronous;
this is accounted for in the dead state on the extreme left.    There is a similar
asynchronous zone between the inband signaling at the end of the packet and the out of
band se0 of the EOP which follows it.  This  may  manifest  itself as an extra bit  at the end
of the  packet and so is  termed dribble; this  must be accounted for in the state machines
when delimiting the end of packet.   These state machines should also  take into account
the fact that the possible dribble may  follow a bit stuff at the end of a packet.

Other  design subtleties

Bit stuffing and unstuffing  can be implemented by putting the state machines and datapath
on  hold while  stuffing or stripping the extra bit.    Bit unstuffing near the EOP  needs to
be handled carefully as explained above.

Although most transactions are three phase, ISO transactions are only two phase and the
state machines need to comprehend this.   Similarly SETUP transactions are identical to
OUT transactions except that they cannot be NAKed or STALLed.   The data buffering
and the state machines need to take this into account. Data toggle sequencing logic at a
bidirectional endpoint  should take into account the specific requirements for the starting
toggle sequence of each stage of a control transfer.
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Low speed signaling is identical to full speed signaling except for the inversion of polarity.
But low speed devices need to comprehend that  while most data entities are defined in
terms of  number of bits,  the  se0  width for reset is not.   Low speed devices should also
be able to handle keep-alive signals (bare EOPs) correctly.

SIE designers should also recognize that the DPLL  may not be able to generate a clock
during resume and  reset signaling  even though it is nominally in receive.  This is because
the DPLL needs at least two good edges before it can lock and start generating the clock
as explained earlier.

 Devices which implement remote wakeup should also have a means to time the period of
driving resume  in the absence of the regular device clock.  They should  comprehend that
host wakeup events can occur at any time relative to the remote wakeup event.  The
device also needs to maintain state information like address, interface setting etc. when
suspended.

Detection of USB reset  should reset the SIE  as well as the rest of the device; this will
reset the counter in the SIE  which is timing the  se0.  This could result in a train of reset
pulses output from the SIE in response to a single long USB reset pulse from the host.
The device should work correctly in this case.

Conclusions

Asynchronous clock domains inherent in any interconnect technology (including USB)
makes the SIE design more challenging than may appear from  an initial reading of the
spec.   The use of a DPLL and a proven clock switching mechanism  with careful analysis
of timing paths can   help achieve a robust design here.  The need to  switch between in
band and out of band signaling to delimit  the end of packet  requires the need for dead
states and dribble bits to be handled in the state machines.   Other subtleties in the spec
should also be kept in mind when designing an SIE.    The protocol compliance checklist
can be very helpful in identifying areas which lack robustness.   SIE cores are available
from various vendors;  these can be of help  to device designers in obtaining a robust
design.   Bus functional models and other tools should provide a means to stress the
robustness areas in the SIE design.


